Coordinated Motion Control of Multiple Autonomous Underwater Vehicles

نویسنده

  • Francesco Vanni Vanni
چکیده

Spawned by recent advances in technology, widespread attention has been focused on the coordination of multiple autonomous vehicles. In numerous mission scenarios, the concept of a group of agents cooperating to achieve a determined goal is very attractive when compared with the solution of one single, heavily equipped vehicle, as it exhibits better performance in terms of efficiency, flexibility and robustness, and can more effectively react and adapt itself to the environment in which it operates. Applications of coordinated control of multiple vehicles include microsatellite clusters, formation flying of unmanned aerial vehicles and automated highway systems. In the field of ocean exploration there has been a surge of interest worldwide in the development of autonomous robots equipped with systems to steer them accurately and reliably in the harsh marine environment and allow them to collect data at the surface and underwater. The cooperation of multiple autonomous underwater vehicles (AUVs) yields several advantages and leads to safer, faster, and far more efficient ways of exploring the ocean frontier, especially in hazardous conditions. The dynamics of underwater vehicles however are characterized by hydrodynamic effects that must necessarily be taken into account during the control design. Moreover, it is common for underwater vehicles to be underactuated, that is, to have fewer actuators than degrees-of-freedom. Motion control for this class of vehicles is especially challenging because most of these systems exhibit nonholonomic constraints. As there are strong practical limitations to the flow of information among vehicles, which is severely restricted by the nature of the supporting communications network, one of the aims of formation control must be to reduce the frequency at which information is exchanged among the systems involved. This is especially true in the case of AUVs, since underwater communications and positioning rely heavily on acoustic systems, which are plagued with intermittent failures, latency, and multipath effects. It is in this framework that this thesis proposes a decentralized control structure, based on Lyapunov techniques and graph theory, that explicitly takes into account both the complex nonlinear dynamics of the cooperating vehicles and the constraints imposed by the topology of the inter-vehicle communications network. For a single vehicle, the solution

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

Coordinated control strategies for networked vehicles: an application to Autonomous Underwater Vehicles

The specification and design of coordinated control strategies for networked vehicles and systems is discussed. A strategy to find the local minimum of an oceanographic scalar field with networked autonomous underwater vehicles (AUV) is presented. The strategy consists in coordinating the motions of the AUVs to implement a modified version of the simplex optimization algorithm. In the original ...

متن کامل

Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pi...

متن کامل

Coordinated Path-Following Control of Multiple Autonomous Underwater Vehicles

The concept of multiple Autonomous Underwater Vehicles (AUVs) cooperatively performing a mission offers several advantages over single vehicles working in a non-cooperative manner such as increased efficiency, performance, reconfigurability, robustness and the emergence of new capabilities. This paper introduces the concept of coordinated path-following control of multiple AUVs. The vehicles ar...

متن کامل

Cognitive Cooperative Control for Autonomous Underwater Vehicles An overview of achievements in the first project year

The aim of the EU-project "Cooperative Cognitive Control for Autonomous Underwater Vehicles (Co3AUVs)" is to develop, implement and test advanced cognitive systems for coordination and cooperative control of multiple AUVs. Several aspects are investigated including 3D perception and mapping, cooperative situation awareness, deliberation and navigation as well as behavioral control strictly link...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007